Metamath Proof Explorer


Theorem snelpwi

Description: A singleton of a set belongs to the power class of a class containing the set. (Contributed by Alan Sare, 25-Aug-2011)

Ref Expression
Assertion snelpwi A B A 𝒫 B

Proof

Step Hyp Ref Expression
1 snssi A B A B
2 snex A V
3 2 elpw A 𝒫 B A B
4 1 3 sylibr A B A 𝒫 B