Metamath Proof Explorer


Theorem snexALT

Description: Alternate proof of snex using Power Set ( ax-pow ) instead of Pairing ( ax-pr ). Unlike in the proof of zfpair , Replacement ( ax-rep ) is not needed. (Contributed by NM, 7-Aug-1994) (Proof shortened by Andrew Salmon, 25-Jul-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion snexALT A V

Proof

Step Hyp Ref Expression
1 snsspw A 𝒫 A
2 ssexg A 𝒫 A 𝒫 A V A V
3 1 2 mpan 𝒫 A V A V
4 pwexg A V 𝒫 A V
5 4 con3i ¬ 𝒫 A V ¬ A V
6 snprc ¬ A V A =
7 6 biimpi ¬ A V A =
8 0ex V
9 7 8 eqeltrdi ¬ A V A V
10 5 9 syl ¬ 𝒫 A V A V
11 3 10 pm2.61i A V