Metamath Proof Explorer


Theorem snfbas

Description: Condition for a singleton to be a filter base. (Contributed by Stefan O'Rear, 2-Aug-2015)

Ref Expression
Assertion snfbas A B A B V A fBas B

Proof

Step Hyp Ref Expression
1 ssexg A B B V A V
2 1 3adant2 A B A B V A V
3 simp2 A B A B V A
4 snfil A V A A Fil A
5 2 3 4 syl2anc A B A B V A Fil A
6 filfbas A Fil A A fBas A
7 5 6 syl A B A B V A fBas A
8 simp1 A B A B V A B
9 elpw2g B V A 𝒫 B A B
10 9 3ad2ant3 A B A B V A 𝒫 B A B
11 8 10 mpbird A B A B V A 𝒫 B
12 11 snssd A B A B V A 𝒫 B
13 simp3 A B A B V B V
14 fbasweak A fBas A A 𝒫 B B V A fBas B
15 7 12 13 14 syl3anc A B A B V A fBas B