Metamath Proof Explorer


Theorem snfbas

Description: Condition for a singleton to be a filter base. (Contributed by Stefan O'Rear, 2-Aug-2015)

Ref Expression
Assertion snfbas ABABVAfBasB

Proof

Step Hyp Ref Expression
1 ssexg ABBVAV
2 1 3adant2 ABABVAV
3 simp2 ABABVA
4 snfil AVAAFilA
5 2 3 4 syl2anc ABABVAFilA
6 filfbas AFilAAfBasA
7 5 6 syl ABABVAfBasA
8 simp1 ABABVAB
9 elpw2g BVA𝒫BAB
10 9 3ad2ant3 ABABVA𝒫BAB
11 8 10 mpbird ABABVA𝒫B
12 11 snssd ABABVA𝒫B
13 simp3 ABABVBV
14 fbasweak AfBasAA𝒫BBVAfBasB
15 7 12 13 14 syl3anc ABABVAfBasB