Metamath Proof Explorer


Theorem snfil

Description: A singleton is a filter. Example 1 of BourbakiTop1 p. I.36. (Contributed by FL, 16-Sep-2007) (Revised by Stefan O'Rear, 2-Aug-2015)

Ref Expression
Assertion snfil A B A A Fil A

Proof

Step Hyp Ref Expression
1 velsn x A x = A
2 eqimss x = A x A
3 2 pm4.71ri x = A x A x = A
4 1 3 bitri x A x A x = A
5 4 a1i A B A x A x A x = A
6 simpl A B A A B
7 eqid A = A
8 eqsbc1 A B [˙A / x]˙ x = A A = A
9 7 8 mpbiri A B [˙A / x]˙ x = A
10 9 adantr A B A [˙A / x]˙ x = A
11 simpr A B A A
12 11 necomd A B A A
13 12 neneqd A B A ¬ = A
14 0ex V
15 eqsbc1 V [˙ / x]˙ x = A = A
16 14 15 ax-mp [˙ / x]˙ x = A = A
17 13 16 sylnibr A B A ¬ [˙ / x]˙ x = A
18 sseq1 x = A x y A y
19 18 anbi2d x = A y A x y y A A y
20 eqss y = A y A A y
21 20 biimpri y A A y y = A
22 19 21 syl6bi x = A y A x y y = A
23 22 com12 y A x y x = A y = A
24 23 3adant1 A B A y A x y x = A y = A
25 sbcid [˙x / x]˙ x = A x = A
26 eqsbc1 y V [˙y / x]˙ x = A y = A
27 26 elv [˙y / x]˙ x = A y = A
28 24 25 27 3imtr4g A B A y A x y [˙x / x]˙ x = A [˙y / x]˙ x = A
29 ineq12 y = A x = A y x = A A
30 inidm A A = A
31 29 30 eqtrdi y = A x = A y x = A
32 27 25 31 syl2anb [˙y / x]˙ x = A [˙x / x]˙ x = A y x = A
33 vex y V
34 33 inex1 y x V
35 eqsbc1 y x V [˙ y x / x]˙ x = A y x = A
36 34 35 ax-mp [˙ y x / x]˙ x = A y x = A
37 32 36 sylibr [˙y / x]˙ x = A [˙x / x]˙ x = A [˙ y x / x]˙ x = A
38 37 a1i A B A y A x A [˙y / x]˙ x = A [˙x / x]˙ x = A [˙ y x / x]˙ x = A
39 5 6 10 17 28 38 isfild A B A A Fil A