Metamath Proof Explorer


Theorem sniota

Description: A class abstraction with a unique member can be expressed as a singleton. (Contributed by Mario Carneiro, 23-Dec-2016)

Ref Expression
Assertion sniota ∃!xφx|φ=ιx|φ

Proof

Step Hyp Ref Expression
1 nfeu1 x∃!xφ
2 nfab1 _xx|φ
3 nfiota1 _xιx|φ
4 3 nfsn _xιx|φ
5 iota1 ∃!xφφιx|φ=x
6 eqcom ιx|φ=xx=ιx|φ
7 5 6 bitrdi ∃!xφφx=ιx|φ
8 abid xx|φφ
9 velsn xιx|φx=ιx|φ
10 7 8 9 3bitr4g ∃!xφxx|φxιx|φ
11 1 2 4 10 eqrd ∃!xφx|φ=ιx|φ