Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Unordered and ordered pairs
snn0d
Next ⟩
snnz
Metamath Proof Explorer
Ascii
Unicode
Theorem
snn0d
Description:
The singleton of a set is not empty.
(Contributed by
Glauco Siliprandi
, 3-Mar-2021)
Ref
Expression
Hypothesis
snn0d.1
⊢
φ
→
A
∈
V
Assertion
snn0d
⊢
φ
→
A
≠
∅
Proof
Step
Hyp
Ref
Expression
1
snn0d.1
⊢
φ
→
A
∈
V
2
snnzg
⊢
A
∈
V
→
A
≠
∅
3
1
2
syl
⊢
φ
→
A
≠
∅