Metamath Proof Explorer


Theorem snnen2o

Description: A singleton { A } is never equinumerous with the ordinal number 2. This holds for proper singletons ( A e.V ) as well as for singletons being the empty set ( A e/ V ). (Contributed by AV, 6-Aug-2019) Avoid ax-pow , ax-un . (Revised by BTernaryTau, 1-Dec-2024)

Ref Expression
Assertion snnen2o ¬ A 2 𝑜

Proof

Step Hyp Ref Expression
1 df2o3 2 𝑜 = 1 𝑜
2 0ex V
3 1oex 1 𝑜 V
4 1n0 1 𝑜
5 4 necomi 1 𝑜
6 prnesn V 1 𝑜 V 1 𝑜 1 𝑜 x
7 2 3 5 6 mp3an 1 𝑜 x
8 1 7 eqnetri 2 𝑜 x
9 8 neii ¬ 2 𝑜 = x
10 9 nex ¬ x 2 𝑜 = x
11 2on0 2 𝑜
12 f1cdmsn f -1 : 2 𝑜 1-1 A 2 𝑜 x 2 𝑜 = x
13 11 12 mpan2 f -1 : 2 𝑜 1-1 A x 2 𝑜 = x
14 10 13 mto ¬ f -1 : 2 𝑜 1-1 A
15 f1ocnv f : A 1-1 onto 2 𝑜 f -1 : 2 𝑜 1-1 onto A
16 f1of1 f -1 : 2 𝑜 1-1 onto A f -1 : 2 𝑜 1-1 A
17 15 16 syl f : A 1-1 onto 2 𝑜 f -1 : 2 𝑜 1-1 A
18 14 17 mto ¬ f : A 1-1 onto 2 𝑜
19 18 nex ¬ f f : A 1-1 onto 2 𝑜
20 snex A V
21 2oex 2 𝑜 V
22 breng A V 2 𝑜 V A 2 𝑜 f f : A 1-1 onto 2 𝑜
23 20 21 22 mp2an A 2 𝑜 f f : A 1-1 onto 2 𝑜
24 19 23 mtbir ¬ A 2 𝑜