Metamath Proof Explorer


Theorem snnex

Description: The class of all singletons is a proper class. See also pwnex . (Contributed by NM, 10-Oct-2008) (Proof shortened by Eric Schmidt, 7-Dec-2008) (Proof shortened by BJ, 5-Dec-2021)

Ref Expression
Assertion snnex x | y x = y V

Proof

Step Hyp Ref Expression
1 abnex y y V y y ¬ x | y x = y V
2 df-nel x | y x = y V ¬ x | y x = y V
3 1 2 sylibr y y V y y x | y x = y V
4 snex y V
5 vsnid y y
6 4 5 pm3.2i y V y y
7 3 6 mpg x | y x = y V