Description: Equivalence for an ordered pair equal to a singleton of an ordered pair. (Contributed by AV, 18-Sep-2020) (Revised by AV, 15-Jul-2022) (Avoid depending on this detail.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | snopeqop.a | |
|
| snopeqop.b | |
||
| Assertion | snopeqop | |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snopeqop.a | |
|
| 2 | snopeqop.b | |
|
| 3 | eqcom | |
|
| 4 | opeqsng | |
|
| 5 | 4 | ancoms | |
| 6 | 3 5 | bitrid | |
| 7 | 1 2 | opeqsn | |
| 8 | 7 | a1i | |
| 9 | 8 | anbi2d | |
| 10 | 3anan12 | |
|
| 11 | 10 | bicomi | |
| 12 | 11 | a1i | |
| 13 | 6 9 12 | 3bitrd | |
| 14 | opprc2 | |
|
| 15 | 14 | eqeq2d | |
| 16 | opex | |
|
| 17 | 16 | snnz | |
| 18 | eqneqall | |
|
| 19 | 17 18 | mpi | |
| 20 | 15 19 | biimtrdi | |
| 21 | 20 | adantr | |
| 22 | eleq1 | |
|
| 23 | 22 | notbid | |
| 24 | 23 | eqcoms | |
| 25 | pm2.21 | |
|
| 26 | 24 25 | biimtrdi | |
| 27 | 26 | impd | |
| 28 | 27 | 3ad2ant2 | |
| 29 | 28 | com12 | |
| 30 | 21 29 | impbid | |
| 31 | 13 30 | pm2.61ian | |
| 32 | opprc1 | |
|
| 33 | 32 | eqeq2d | |
| 34 | 33 19 | biimtrdi | |
| 35 | eleq1 | |
|
| 36 | 35 | notbid | |
| 37 | snex | |
|
| 38 | 37 | pm2.24i | |
| 39 | 36 38 | biimtrdi | |
| 40 | 39 | 3ad2ant3 | |
| 41 | 40 | com12 | |
| 42 | 34 41 | impbid | |
| 43 | 31 42 | pm2.61i | |