Metamath Proof Explorer


Theorem snopeqop

Description: Equivalence for an ordered pair equal to a singleton of an ordered pair. (Contributed by AV, 18-Sep-2020) (Revised by AV, 15-Jul-2022) (Avoid depending on this detail.)

Ref Expression
Hypotheses snopeqop.a A V
snopeqop.b B V
Assertion snopeqop A B = C D A = B C = D C = A

Proof

Step Hyp Ref Expression
1 snopeqop.a A V
2 snopeqop.b B V
3 eqcom A B = C D C D = A B
4 opeqsng C V D V C D = A B C = D A B = C
5 4 ancoms D V C V C D = A B C = D A B = C
6 3 5 syl5bb D V C V A B = C D C = D A B = C
7 1 2 opeqsn A B = C A = B C = A
8 7 a1i D V C V A B = C A = B C = A
9 8 anbi2d D V C V C = D A B = C C = D A = B C = A
10 3anan12 A = B C = D C = A C = D A = B C = A
11 10 bicomi C = D A = B C = A A = B C = D C = A
12 11 a1i D V C V C = D A = B C = A A = B C = D C = A
13 6 9 12 3bitrd D V C V A B = C D A = B C = D C = A
14 opprc2 ¬ D V C D =
15 14 eqeq2d ¬ D V A B = C D A B =
16 opex A B V
17 16 snnz A B
18 eqneqall A B = A B A = B C = D C = A
19 17 18 mpi A B = A = B C = D C = A
20 15 19 syl6bi ¬ D V A B = C D A = B C = D C = A
21 20 adantr ¬ D V C V A B = C D A = B C = D C = A
22 eleq1 D = C D V C V
23 22 notbid D = C ¬ D V ¬ C V
24 23 eqcoms C = D ¬ D V ¬ C V
25 pm2.21 ¬ C V C V A B = C D
26 24 25 syl6bi C = D ¬ D V C V A B = C D
27 26 impd C = D ¬ D V C V A B = C D
28 27 3ad2ant2 A = B C = D C = A ¬ D V C V A B = C D
29 28 com12 ¬ D V C V A = B C = D C = A A B = C D
30 21 29 impbid ¬ D V C V A B = C D A = B C = D C = A
31 13 30 pm2.61ian C V A B = C D A = B C = D C = A
32 opprc1 ¬ C V C D =
33 32 eqeq2d ¬ C V A B = C D A B =
34 33 19 syl6bi ¬ C V A B = C D A = B C = D C = A
35 eleq1 C = A C V A V
36 35 notbid C = A ¬ C V ¬ A V
37 snex A V
38 37 pm2.24i ¬ A V A B = C D
39 36 38 syl6bi C = A ¬ C V A B = C D
40 39 3ad2ant3 A = B C = D C = A ¬ C V A B = C D
41 40 com12 ¬ C V A = B C = D C = A A B = C D
42 34 41 impbid ¬ C V A B = C D A = B C = D C = A
43 31 42 pm2.61i A B = C D A = B C = D C = A