Metamath Proof Explorer


Theorem snopiswrd

Description: A singleton of an ordered pair (with 0 as first component) is a word. (Contributed by AV, 23-Nov-2018) (Proof shortened by AV, 18-Apr-2021)

Ref Expression
Assertion snopiswrd S V 0 S Word V

Proof

Step Hyp Ref Expression
1 0zd S V 0
2 id S V S V
3 1 2 fsnd S V 0 S : 0 V
4 fzo01 0 ..^ 1 = 0
5 4 feq2i 0 S : 0 ..^ 1 V 0 S : 0 V
6 3 5 sylibr S V 0 S : 0 ..^ 1 V
7 iswrdi 0 S : 0 ..^ 1 V 0 S Word V
8 6 7 syl S V 0 S Word V