Metamath Proof Explorer


Theorem snopsuppss

Description: The support of a singleton containing an ordered pair is a subset of the singleton containing the first element of the ordered pair, i.e. it is empty or the singleton itself. (Contributed by AV, 19-Jul-2019)

Ref Expression
Assertion snopsuppss X Y supp Z X

Proof

Step Hyp Ref Expression
1 suppssdm X Y supp Z dom X Y
2 dmsnopss dom X Y X
3 1 2 sstri X Y supp Z X