Metamath Proof Explorer


Theorem snriota

Description: A restricted class abstraction with a unique member can be expressed as a singleton. (Contributed by NM, 30-May-2006)

Ref Expression
Assertion snriota ∃! x A φ x A | φ = ι x A | φ

Proof

Step Hyp Ref Expression
1 df-reu ∃! x A φ ∃! x x A φ
2 sniota ∃! x x A φ x | x A φ = ι x | x A φ
3 1 2 sylbi ∃! x A φ x | x A φ = ι x | x A φ
4 df-rab x A | φ = x | x A φ
5 df-riota ι x A | φ = ι x | x A φ
6 5 sneqi ι x A | φ = ι x | x A φ
7 3 4 6 3eqtr4g ∃! x A φ x A | φ = ι x A | φ