Metamath Proof Explorer


Theorem snsymgefmndeq

Description: The symmetric group on a singleton A is identical with the monoid of endofunctions on A . (Contributed by AV, 31-Mar-2024)

Ref Expression
Assertion snsymgefmndeq A = X EndoFMnd A = SymGrp A

Proof

Step Hyp Ref Expression
1 ssidd X V X X X X
2 eqid EndoFMnd X = EndoFMnd X
3 eqid Base EndoFMnd X = Base EndoFMnd X
4 eqid X = X
5 2 3 4 efmnd1bas X V Base EndoFMnd X = X X
6 eqid SymGrp X = SymGrp X
7 eqid Base SymGrp X = Base SymGrp X
8 6 7 4 symg1bas X V Base SymGrp X = X X
9 1 5 8 3sstr4d X V Base EndoFMnd X Base SymGrp X
10 fvexd X V EndoFMnd X V
11 fvexd X V Base SymGrp X V
12 6 7 2 symgressbas SymGrp X = EndoFMnd X 𝑠 Base SymGrp X
13 12 3 ressid2 Base EndoFMnd X Base SymGrp X EndoFMnd X V Base SymGrp X V SymGrp X = EndoFMnd X
14 9 10 11 13 syl3anc X V SymGrp X = EndoFMnd X
15 14 eqcomd X V EndoFMnd X = SymGrp X
16 fveq2 A = X EndoFMnd A = EndoFMnd X
17 fveq2 A = X SymGrp A = SymGrp X
18 16 17 eqeq12d A = X EndoFMnd A = SymGrp A EndoFMnd X = SymGrp X
19 15 18 syl5ibrcom X V A = X EndoFMnd A = SymGrp A
20 snprc ¬ X V X =
21 20 biimpi ¬ X V X =
22 21 eqeq2d ¬ X V A = X A =
23 0symgefmndeq EndoFMnd = SymGrp
24 fveq2 A = EndoFMnd A = EndoFMnd
25 fveq2 A = SymGrp A = SymGrp
26 23 24 25 3eqtr4a A = EndoFMnd A = SymGrp A
27 22 26 biimtrdi ¬ X V A = X EndoFMnd A = SymGrp A
28 19 27 pm2.61i A = X EndoFMnd A = SymGrp A