Metamath Proof Explorer


Theorem snunico

Description: The closure of the open end of a right-open real interval. (Contributed by Mario Carneiro, 16-Jun-2014)

Ref Expression
Assertion snunico A * B * A B A B B = A B

Proof

Step Hyp Ref Expression
1 simp2 A * B * A B B *
2 iccid B * B B = B
3 1 2 syl A * B * A B B B = B
4 3 uneq2d A * B * A B A B B B = A B B
5 simp1 A * B * A B A *
6 simp3 A * B * A B A B
7 1 xrleidd A * B * A B B B
8 df-ico . = x * , y * z * | x z z < y
9 df-icc . = x * , y * z * | x z z y
10 xrlenlt B * w * B w ¬ w < B
11 xrltle w * B * w < B w B
12 11 3adant3 w * B * B * w < B w B
13 12 adantrd w * B * B * w < B B B w B
14 xrletr A * B * w * A B B w A w
15 8 9 10 9 13 14 ixxun A * B * B * A B B B A B B B = A B
16 5 1 1 6 7 15 syl32anc A * B * A B A B B B = A B
17 4 16 eqtr3d A * B * A B A B B = A B