Metamath Proof Explorer


Theorem snunioc

Description: The closure of the open end of a left-open real interval. (Contributed by Thierry Arnoux, 28-Mar-2017)

Ref Expression
Assertion snunioc A * B * A B A A B = A B

Proof

Step Hyp Ref Expression
1 iccid A * A A = A
2 1 3ad2ant1 A * B * A B A A = A
3 2 uneq1d A * B * A B A A A B = A A B
4 simp1 A * B * A B A *
5 simp2 A * B * A B B *
6 xrleid A * A A
7 6 3ad2ant1 A * B * A B A A
8 simp3 A * B * A B A B
9 df-icc . = x * , y * z * | x z z y
10 df-ioc . = x * , y * z * | x < z z y
11 xrltnle A * w * A < w ¬ w A
12 xrletr w * A * B * w A A B w B
13 simpl1 A * A * w * A A A < w A *
14 simpl3 A * A * w * A A A < w w *
15 simprr A * A * w * A A A < w A < w
16 13 14 15 xrltled A * A * w * A A A < w A w
17 16 ex A * A * w * A A A < w A w
18 9 10 11 9 12 17 ixxun A * A * B * A A A B A A A B = A B
19 4 4 5 7 8 18 syl32anc A * B * A B A A A B = A B
20 3 19 eqtr3d A * B * A B A A B = A B