Metamath Proof Explorer


Theorem snunioo

Description: The closure of one end of an open real interval. (Contributed by Paul Chapman, 15-Mar-2008) (Proof shortened by Mario Carneiro, 16-Jun-2014)

Ref Expression
Assertion snunioo A * B * A < B A A B = A B

Proof

Step Hyp Ref Expression
1 simp1 A * B * A < B A *
2 iccid A * A A = A
3 1 2 syl A * B * A < B A A = A
4 3 uneq1d A * B * A < B A A A B = A A B
5 simp2 A * B * A < B B *
6 1 xrleidd A * B * A < B A A
7 simp3 A * B * A < B A < B
8 df-icc . = x * , y * z * | x z z y
9 df-ioo . = x * , y * z * | x < z z < y
10 xrltnle A * w * A < w ¬ w A
11 df-ico . = x * , y * z * | x z z < y
12 xrlelttr w * A * B * w A A < B w < B
13 xrltle A * w * A < w A w
14 13 3adant1 A * A * w * A < w A w
15 14 adantld A * A * w * A A A < w A w
16 8 9 10 11 12 15 ixxun A * A * B * A A A < B A A A B = A B
17 1 1 5 6 7 16 syl32anc A * B * A < B A A A B = A B
18 4 17 eqtr3d A * B * A < B A A B = A B