Metamath Proof Explorer


Theorem snunioo1

Description: The closure of one end of an open real interval. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Assertion snunioo1 A * B * A < B A B A = A B

Proof

Step Hyp Ref Expression
1 uncom A B A A = A A A B
2 iccid A * A A = A
3 2 3ad2ant1 A * B * A < B A A = A
4 3 uneq2d A * B * A < B A B A A = A B A
5 simp1 A * B * A < B A *
6 simp2 A * B * A < B B *
7 xrleid A * A A
8 7 3ad2ant1 A * B * A < B A A
9 simp3 A * B * A < B A < B
10 df-icc . = x * , y * z * | x z z y
11 df-ioo . = x * , y * z * | x < z z < y
12 xrltnle A * w * A < w ¬ w A
13 df-ico . = x * , y * z * | x z z < y
14 xrlelttr w * A * B * w A A < B w < B
15 simpl1 A * A * w * A A A < w A *
16 simpl3 A * A * w * A A A < w w *
17 simprr A * A * w * A A A < w A < w
18 15 16 17 xrltled A * A * w * A A A < w A w
19 18 ex A * A * w * A A A < w A w
20 10 11 12 13 14 19 ixxun A * A * B * A A A < B A A A B = A B
21 5 5 6 8 9 20 syl32anc A * B * A < B A A A B = A B
22 1 4 21 3eqtr3a A * B * A < B A B A = A B