Metamath Proof Explorer


Theorem so0

Description: Any relation is a strict ordering of the empty set. (Contributed by NM, 16-Mar-1997) (Proof shortened by Andrew Salmon, 25-Jul-2011)

Ref Expression
Assertion so0 R Or

Proof

Step Hyp Ref Expression
1 po0 R Po
2 ral0 x y x R y x = y y R x
3 df-so R Or R Po x y x R y x = y y R x
4 1 2 3 mpbir2an R Or