Metamath Proof Explorer


Theorem so2nr

Description: A strict order relation has no 2-cycle loops. (Contributed by NM, 21-Jan-1996)

Ref Expression
Assertion so2nr R Or A B A C A ¬ B R C C R B

Proof

Step Hyp Ref Expression
1 sopo R Or A R Po A
2 po2nr R Po A B A C A ¬ B R C C R B
3 1 2 sylan R Or A B A C A ¬ B R C C R B