Metamath Proof Explorer


Theorem so3nr

Description: A strict order relation has no 3-cycle loops. (Contributed by NM, 21-Jan-1996)

Ref Expression
Assertion so3nr R Or A B A C A D A ¬ B R C C R D D R B

Proof

Step Hyp Ref Expression
1 sopo R Or A R Po A
2 po3nr R Po A B A C A D A ¬ B R C C R D D R B
3 1 2 sylan R Or A B A C A D A ¬ B R C C R D D R B