Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Partial and total orderings
soasym
Next ⟩
sotr2
Metamath Proof Explorer
Ascii
Unicode
Theorem
soasym
Description:
Asymmetry law for strict orderings.
(Contributed by
Scott Fenton
, 24-Nov-2021)
Ref
Expression
Assertion
soasym
⊢
R
Or
A
∧
X
∈
A
∧
Y
∈
A
→
X
R
Y
→
¬
Y
R
X
Proof
Step
Hyp
Ref
Expression
1
sotric
⊢
R
Or
A
∧
X
∈
A
∧
Y
∈
A
→
X
R
Y
↔
¬
X
=
Y
∨
Y
R
X
2
pm2.46
⊢
¬
X
=
Y
∨
Y
R
X
→
¬
Y
R
X
3
1
2
syl6bi
⊢
R
Or
A
∧
X
∈
A
∧
Y
∈
A
→
X
R
Y
→
¬
Y
R
X