Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Partial and total orderings
soeq1
Next ⟩
soeq2
Metamath Proof Explorer
Ascii
Unicode
Theorem
soeq1
Description:
Equality theorem for the strict ordering predicate.
(Contributed by
NM
, 16-Mar-1997)
Ref
Expression
Assertion
soeq1
⊢
R
=
S
→
R
Or
A
↔
S
Or
A
Proof
Step
Hyp
Ref
Expression
1
poeq1
⊢
R
=
S
→
R
Po
A
↔
S
Po
A
2
breq
⊢
R
=
S
→
x
R
y
↔
x
S
y
3
biidd
⊢
R
=
S
→
x
=
y
↔
x
=
y
4
breq
⊢
R
=
S
→
y
R
x
↔
y
S
x
5
2
3
4
3orbi123d
⊢
R
=
S
→
x
R
y
∨
x
=
y
∨
y
R
x
↔
x
S
y
∨
x
=
y
∨
y
S
x
6
5
2ralbidv
⊢
R
=
S
→
∀
x
∈
A
∀
y
∈
A
x
R
y
∨
x
=
y
∨
y
R
x
↔
∀
x
∈
A
∀
y
∈
A
x
S
y
∨
x
=
y
∨
y
S
x
7
1
6
anbi12d
⊢
R
=
S
→
R
Po
A
∧
∀
x
∈
A
∀
y
∈
A
x
R
y
∨
x
=
y
∨
y
R
x
↔
S
Po
A
∧
∀
x
∈
A
∀
y
∈
A
x
S
y
∨
x
=
y
∨
y
S
x
8
df-so
⊢
R
Or
A
↔
R
Po
A
∧
∀
x
∈
A
∀
y
∈
A
x
R
y
∨
x
=
y
∨
y
R
x
9
df-so
⊢
S
Or
A
↔
S
Po
A
∧
∀
x
∈
A
∀
y
∈
A
x
S
y
∨
x
=
y
∨
y
S
x
10
7
8
9
3bitr4g
⊢
R
=
S
→
R
Or
A
↔
S
Or
A