Metamath Proof Explorer


Theorem soeq12d

Description: Equality deduction for total orderings. (Contributed by Stefan O'Rear, 19-Jan-2015)

Ref Expression
Hypotheses weeq12d.l φ R = S
weeq12d.r φ A = B
Assertion soeq12d φ R Or A S Or B

Proof

Step Hyp Ref Expression
1 weeq12d.l φ R = S
2 weeq12d.r φ A = B
3 soeq1 R = S R Or A S Or A
4 1 3 syl φ R Or A S Or A
5 soeq2 A = B S Or A S Or B
6 2 5 syl φ S Or A S Or B
7 4 6 bitrd φ R Or A S Or B