Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Partial and total orderings
soeq2
Next ⟩
sonr
Metamath Proof Explorer
Ascii
Unicode
Theorem
soeq2
Description:
Equality theorem for the strict ordering predicate.
(Contributed by
NM
, 16-Mar-1997)
Ref
Expression
Assertion
soeq2
⊢
A
=
B
→
R
Or
A
↔
R
Or
B
Proof
Step
Hyp
Ref
Expression
1
soss
⊢
A
⊆
B
→
R
Or
B
→
R
Or
A
2
soss
⊢
B
⊆
A
→
R
Or
A
→
R
Or
B
3
1
2
anim12i
⊢
A
⊆
B
∧
B
⊆
A
→
R
Or
B
→
R
Or
A
∧
R
Or
A
→
R
Or
B
4
eqss
⊢
A
=
B
↔
A
⊆
B
∧
B
⊆
A
5
dfbi2
⊢
R
Or
B
↔
R
Or
A
↔
R
Or
B
→
R
Or
A
∧
R
Or
A
→
R
Or
B
6
3
4
5
3imtr4i
⊢
A
=
B
→
R
Or
B
↔
R
Or
A
7
6
bicomd
⊢
A
=
B
→
R
Or
A
↔
R
Or
B