Metamath Proof Explorer


Theorem sofld

Description: The base set of a nonempty strict order is the same as the field of the relation. (Contributed by Mario Carneiro, 15-May-2015)

Ref Expression
Assertion sofld R Or A R A × A R A = dom R ran R

Proof

Step Hyp Ref Expression
1 relxp Rel A × A
2 relss R A × A Rel A × A Rel R
3 1 2 mpi R A × A Rel R
4 3 ad2antlr R Or A R A × A ¬ A dom R ran R Rel R
5 df-br x R y x y R
6 ssun1 A A x
7 undif1 A x x = A x
8 6 7 sseqtrri A A x x
9 simpll R Or A R A × A x R y R Or A
10 dmss R A × A dom R dom A × A
11 dmxpid dom A × A = A
12 10 11 sseqtrdi R A × A dom R A
13 12 ad2antlr R Or A R A × A x R y dom R A
14 3 ad2antlr R Or A R A × A x R y Rel R
15 releldm Rel R x R y x dom R
16 14 15 sylancom R Or A R A × A x R y x dom R
17 13 16 sseldd R Or A R A × A x R y x A
18 sossfld R Or A x A A x dom R ran R
19 9 17 18 syl2anc R Or A R A × A x R y A x dom R ran R
20 ssun1 dom R dom R ran R
21 20 16 sselid R Or A R A × A x R y x dom R ran R
22 21 snssd R Or A R A × A x R y x dom R ran R
23 19 22 unssd R Or A R A × A x R y A x x dom R ran R
24 8 23 sstrid R Or A R A × A x R y A dom R ran R
25 24 ex R Or A R A × A x R y A dom R ran R
26 5 25 syl5bir R Or A R A × A x y R A dom R ran R
27 26 con3dimp R Or A R A × A ¬ A dom R ran R ¬ x y R
28 27 pm2.21d R Or A R A × A ¬ A dom R ran R x y R x y
29 4 28 relssdv R Or A R A × A ¬ A dom R ran R R
30 ss0 R R =
31 29 30 syl R Or A R A × A ¬ A dom R ran R R =
32 31 ex R Or A R A × A ¬ A dom R ran R R =
33 32 necon1ad R Or A R A × A R A dom R ran R
34 33 3impia R Or A R A × A R A dom R ran R
35 rnss R A × A ran R ran A × A
36 rnxpid ran A × A = A
37 35 36 sseqtrdi R A × A ran R A
38 12 37 unssd R A × A dom R ran R A
39 38 3ad2ant2 R Or A R A × A R dom R ran R A
40 34 39 eqssd R Or A R A × A R A = dom R ran R