Step |
Hyp |
Ref |
Expression |
1 |
|
isorel |
|
2 |
|
fvres |
|
3 |
|
fvres |
|
4 |
2 3
|
breqan12d |
|
5 |
4
|
adantl |
|
6 |
1 5
|
bitrd |
|
7 |
6
|
biimpd |
|
8 |
7
|
ralrimivva |
|
9 |
|
ffn |
|
10 |
9
|
ad2antrl |
|
11 |
|
simprr |
|
12 |
|
fnssres |
|
13 |
10 11 12
|
syl2anc |
|
14 |
13
|
3adant3 |
|
15 |
|
df-ima |
|
16 |
15
|
eqcomi |
|
17 |
16
|
a1i |
|
18 |
|
fvres |
|
19 |
|
fvres |
|
20 |
18 19
|
eqeqan12d |
|
21 |
20
|
adantl |
|
22 |
|
simprl |
|
23 |
|
simprr |
|
24 |
|
simpl3 |
|
25 |
|
breq1 |
|
26 |
|
fveq2 |
|
27 |
26
|
breq1d |
|
28 |
25 27
|
imbi12d |
|
29 |
|
breq2 |
|
30 |
|
fveq2 |
|
31 |
30
|
breq2d |
|
32 |
29 31
|
imbi12d |
|
33 |
28 32
|
rspc2va |
|
34 |
22 23 24 33
|
syl21anc |
|
35 |
|
breq1 |
|
36 |
|
fveq2 |
|
37 |
36
|
breq1d |
|
38 |
35 37
|
imbi12d |
|
39 |
|
breq2 |
|
40 |
|
fveq2 |
|
41 |
40
|
breq2d |
|
42 |
39 41
|
imbi12d |
|
43 |
38 42
|
rspc2va |
|
44 |
23 22 24 43
|
syl21anc |
|
45 |
34 44
|
orim12d |
|
46 |
45
|
con3d |
|
47 |
|
simpl1r |
|
48 |
|
simpl2l |
|
49 |
|
simpl2r |
|
50 |
49 22
|
sseldd |
|
51 |
48 50
|
ffvelrnd |
|
52 |
49 23
|
sseldd |
|
53 |
48 52
|
ffvelrnd |
|
54 |
|
sotrieq |
|
55 |
47 51 53 54
|
syl12anc |
|
56 |
|
simpl1l |
|
57 |
|
sotrieq |
|
58 |
56 50 52 57
|
syl12anc |
|
59 |
46 55 58
|
3imtr4d |
|
60 |
21 59
|
sylbid |
|
61 |
60
|
ralrimivva |
|
62 |
|
dff1o6 |
|
63 |
14 17 61 62
|
syl3anbrc |
|
64 |
|
fveq2 |
|
65 |
64
|
a1i |
|
66 |
65 44
|
orim12d |
|
67 |
66
|
con3d |
|
68 |
|
sotric |
|
69 |
47 51 53 68
|
syl12anc |
|
70 |
|
sotric |
|
71 |
56 50 52 70
|
syl12anc |
|
72 |
67 69 71
|
3imtr4d |
|
73 |
34 72
|
impbid |
|
74 |
18 19
|
breqan12d |
|
75 |
74
|
adantl |
|
76 |
73 75
|
bitr4d |
|
77 |
76
|
ralrimivva |
|
78 |
|
df-isom |
|
79 |
63 77 78
|
sylanbrc |
|
80 |
79
|
3expia |
|
81 |
8 80
|
impbid2 |
|