Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Relations
somincom
Next ⟩
somin2
Metamath Proof Explorer
Ascii
Unicode
Theorem
somincom
Description:
Commutativity of minimum in a total order.
(Contributed by
Stefan O'Rear
, 17-Jan-2015)
Ref
Expression
Assertion
somincom
⊢
R
Or
X
∧
A
∈
X
∧
B
∈
X
→
if
A
R
B
A
B
=
if
B
R
A
B
A
Proof
Step
Hyp
Ref
Expression
1
so2nr
⊢
R
Or
X
∧
A
∈
X
∧
B
∈
X
→
¬
A
R
B
∧
B
R
A
2
nan
⊢
R
Or
X
∧
A
∈
X
∧
B
∈
X
→
¬
A
R
B
∧
B
R
A
↔
R
Or
X
∧
A
∈
X
∧
B
∈
X
∧
A
R
B
→
¬
B
R
A
3
1
2
mpbi
⊢
R
Or
X
∧
A
∈
X
∧
B
∈
X
∧
A
R
B
→
¬
B
R
A
4
3
iffalsed
⊢
R
Or
X
∧
A
∈
X
∧
B
∈
X
∧
A
R
B
→
if
B
R
A
B
A
=
A
5
4
eqcomd
⊢
R
Or
X
∧
A
∈
X
∧
B
∈
X
∧
A
R
B
→
A
=
if
B
R
A
B
A
6
sotric
⊢
R
Or
X
∧
A
∈
X
∧
B
∈
X
→
A
R
B
↔
¬
A
=
B
∨
B
R
A
7
6
con2bid
⊢
R
Or
X
∧
A
∈
X
∧
B
∈
X
→
A
=
B
∨
B
R
A
↔
¬
A
R
B
8
ifeq2
⊢
A
=
B
→
if
B
R
A
B
A
=
if
B
R
A
B
B
9
ifid
⊢
if
B
R
A
B
B
=
B
10
8
9
eqtr2di
⊢
A
=
B
→
B
=
if
B
R
A
B
A
11
iftrue
⊢
B
R
A
→
if
B
R
A
B
A
=
B
12
11
eqcomd
⊢
B
R
A
→
B
=
if
B
R
A
B
A
13
10
12
jaoi
⊢
A
=
B
∨
B
R
A
→
B
=
if
B
R
A
B
A
14
7
13
syl6bir
⊢
R
Or
X
∧
A
∈
X
∧
B
∈
X
→
¬
A
R
B
→
B
=
if
B
R
A
B
A
15
14
imp
⊢
R
Or
X
∧
A
∈
X
∧
B
∈
X
∧
¬
A
R
B
→
B
=
if
B
R
A
B
A
16
5
15
ifeqda
⊢
R
Or
X
∧
A
∈
X
∧
B
∈
X
→
if
A
R
B
A
B
=
if
B
R
A
B
A