Metamath Proof Explorer


Theorem son2lpi

Description: A strict order relation has no 2-cycle loops. (Contributed by NM, 10-Feb-1996) (Revised by Mario Carneiro, 10-May-2013)

Ref Expression
Hypotheses soi.1 R Or S
soi.2 R S × S
Assertion son2lpi ¬ A R B B R A

Proof

Step Hyp Ref Expression
1 soi.1 R Or S
2 soi.2 R S × S
3 1 2 soirri ¬ A R A
4 1 2 sotri A R B B R A A R A
5 3 4 mto ¬ A R B B R A