Metamath Proof Explorer


Theorem sonr

Description: A strict order relation is irreflexive. (Contributed by NM, 24-Nov-1995)

Ref Expression
Assertion sonr R Or A B A ¬ B R B

Proof

Step Hyp Ref Expression
1 sopo R Or A R Po A
2 poirr R Po A B A ¬ B R B
3 1 2 sylan R Or A B A ¬ B R B