Metamath Proof Explorer


Theorem sornom

Description: The range of a single-step monotone function from _om into a partially ordered set is a chain. (Contributed by Stefan O'Rear, 3-Nov-2014)

Ref Expression
Assertion sornom F Fn ω a ω F a R F suc a F a = F suc a R Po ran F R Or ran F

Proof

Step Hyp Ref Expression
1 simp3 F Fn ω a ω F a R F suc a F a = F suc a R Po ran F R Po ran F
2 fvelrnb F Fn ω b ran F d ω F d = b
3 fvelrnb F Fn ω c ran F e ω F e = c
4 2 3 anbi12d F Fn ω b ran F c ran F d ω F d = b e ω F e = c
5 4 3ad2ant1 F Fn ω a ω F a R F suc a F a = F suc a R Po ran F b ran F c ran F d ω F d = b e ω F e = c
6 reeanv d ω e ω F d = b F e = c d ω F d = b e ω F e = c
7 nnord d ω Ord d
8 nnord e ω Ord e
9 ordtri2or2 Ord d Ord e d e e d
10 7 8 9 syl2an d ω e ω d e e d
11 10 adantl F Fn ω a ω F a R F suc a F a = F suc a R Po ran F d ω e ω d e e d
12 vex d V
13 vex e V
14 eleq1w b = d b ω d ω
15 eleq1w c = e c ω e ω
16 14 15 bi2anan9 b = d c = e b ω c ω d ω e ω
17 16 anbi2d b = d c = e F Fn ω a ω F a R F suc a F a = F suc a R Po ran F b ω c ω F Fn ω a ω F a R F suc a F a = F suc a R Po ran F d ω e ω
18 sseq12 b = d c = e b c d e
19 fveq2 b = d F b = F d
20 fveq2 c = e F c = F e
21 19 20 breqan12d b = d c = e F b R F c F d R F e
22 19 20 eqeqan12d b = d c = e F b = F c F d = F e
23 21 22 orbi12d b = d c = e F b R F c F b = F c F d R F e F d = F e
24 18 23 imbi12d b = d c = e b c F b R F c F b = F c d e F d R F e F d = F e
25 17 24 imbi12d b = d c = e F Fn ω a ω F a R F suc a F a = F suc a R Po ran F b ω c ω b c F b R F c F b = F c F Fn ω a ω F a R F suc a F a = F suc a R Po ran F d ω e ω d e F d R F e F d = F e
26 fveq2 d = b F d = F b
27 26 breq2d d = b F b R F d F b R F b
28 26 eqeq2d d = b F b = F d F b = F b
29 27 28 orbi12d d = b F b R F d F b = F d F b R F b F b = F b
30 29 imbi2d d = b F Fn ω a ω F a R F suc a F a = F suc a R Po ran F F b R F d F b = F d F Fn ω a ω F a R F suc a F a = F suc a R Po ran F F b R F b F b = F b
31 fveq2 d = e F d = F e
32 31 breq2d d = e F b R F d F b R F e
33 31 eqeq2d d = e F b = F d F b = F e
34 32 33 orbi12d d = e F b R F d F b = F d F b R F e F b = F e
35 34 imbi2d d = e F Fn ω a ω F a R F suc a F a = F suc a R Po ran F F b R F d F b = F d F Fn ω a ω F a R F suc a F a = F suc a R Po ran F F b R F e F b = F e
36 fveq2 d = suc e F d = F suc e
37 36 breq2d d = suc e F b R F d F b R F suc e
38 36 eqeq2d d = suc e F b = F d F b = F suc e
39 37 38 orbi12d d = suc e F b R F d F b = F d F b R F suc e F b = F suc e
40 39 imbi2d d = suc e F Fn ω a ω F a R F suc a F a = F suc a R Po ran F F b R F d F b = F d F Fn ω a ω F a R F suc a F a = F suc a R Po ran F F b R F suc e F b = F suc e
41 fveq2 d = c F d = F c
42 41 breq2d d = c F b R F d F b R F c
43 41 eqeq2d d = c F b = F d F b = F c
44 42 43 orbi12d d = c F b R F d F b = F d F b R F c F b = F c
45 44 imbi2d d = c F Fn ω a ω F a R F suc a F a = F suc a R Po ran F F b R F d F b = F d F Fn ω a ω F a R F suc a F a = F suc a R Po ran F F b R F c F b = F c
46 eqid F b = F b
47 46 olci F b R F b F b = F b
48 47 2a1i b ω F Fn ω a ω F a R F suc a F a = F suc a R Po ran F F b R F b F b = F b
49 fveq2 a = e F a = F e
50 suceq a = e suc a = suc e
51 50 fveq2d a = e F suc a = F suc e
52 49 51 breq12d a = e F a R F suc a F e R F suc e
53 49 51 eqeq12d a = e F a = F suc a F e = F suc e
54 52 53 orbi12d a = e F a R F suc a F a = F suc a F e R F suc e F e = F suc e
55 simpr2 e ω b ω b e F Fn ω a ω F a R F suc a F a = F suc a R Po ran F a ω F a R F suc a F a = F suc a
56 simplll e ω b ω b e F Fn ω a ω F a R F suc a F a = F suc a R Po ran F e ω
57 54 55 56 rspcdva e ω b ω b e F Fn ω a ω F a R F suc a F a = F suc a R Po ran F F e R F suc e F e = F suc e
58 simprr e ω b ω b e F Fn ω R Po ran F R Po ran F
59 simprl e ω b ω b e F Fn ω R Po ran F F Fn ω
60 simpllr e ω b ω b e F Fn ω R Po ran F b ω
61 fnfvelrn F Fn ω b ω F b ran F
62 59 60 61 syl2anc e ω b ω b e F Fn ω R Po ran F F b ran F
63 simplll e ω b ω b e F Fn ω R Po ran F e ω
64 fnfvelrn F Fn ω e ω F e ran F
65 59 63 64 syl2anc e ω b ω b e F Fn ω R Po ran F F e ran F
66 peano2 e ω suc e ω
67 66 ad3antrrr e ω b ω b e F Fn ω R Po ran F suc e ω
68 fnfvelrn F Fn ω suc e ω F suc e ran F
69 59 67 68 syl2anc e ω b ω b e F Fn ω R Po ran F F suc e ran F
70 potr R Po ran F F b ran F F e ran F F suc e ran F F b R F e F e R F suc e F b R F suc e
71 58 62 65 69 70 syl13anc e ω b ω b e F Fn ω R Po ran F F b R F e F e R F suc e F b R F suc e
72 71 imp e ω b ω b e F Fn ω R Po ran F F b R F e F e R F suc e F b R F suc e
73 72 ancom2s e ω b ω b e F Fn ω R Po ran F F e R F suc e F b R F e F b R F suc e
74 73 orcd e ω b ω b e F Fn ω R Po ran F F e R F suc e F b R F e F b R F suc e F b = F suc e
75 74 expr e ω b ω b e F Fn ω R Po ran F F e R F suc e F b R F e F b R F suc e F b = F suc e
76 breq1 F b = F e F b R F suc e F e R F suc e
77 76 biimprcd F e R F suc e F b = F e F b R F suc e
78 orc F b R F suc e F b R F suc e F b = F suc e
79 77 78 syl6 F e R F suc e F b = F e F b R F suc e F b = F suc e
80 79 adantl e ω b ω b e F Fn ω R Po ran F F e R F suc e F b = F e F b R F suc e F b = F suc e
81 75 80 jaod e ω b ω b e F Fn ω R Po ran F F e R F suc e F b R F e F b = F e F b R F suc e F b = F suc e
82 81 ex e ω b ω b e F Fn ω R Po ran F F e R F suc e F b R F e F b = F e F b R F suc e F b = F suc e
83 breq2 F e = F suc e F b R F e F b R F suc e
84 eqeq2 F e = F suc e F b = F e F b = F suc e
85 83 84 orbi12d F e = F suc e F b R F e F b = F e F b R F suc e F b = F suc e
86 85 biimpd F e = F suc e F b R F e F b = F e F b R F suc e F b = F suc e
87 86 a1i e ω b ω b e F Fn ω R Po ran F F e = F suc e F b R F e F b = F e F b R F suc e F b = F suc e
88 82 87 jaod e ω b ω b e F Fn ω R Po ran F F e R F suc e F e = F suc e F b R F e F b = F e F b R F suc e F b = F suc e
89 88 3adantr2 e ω b ω b e F Fn ω a ω F a R F suc a F a = F suc a R Po ran F F e R F suc e F e = F suc e F b R F e F b = F e F b R F suc e F b = F suc e
90 57 89 mpd e ω b ω b e F Fn ω a ω F a R F suc a F a = F suc a R Po ran F F b R F e F b = F e F b R F suc e F b = F suc e
91 90 ex e ω b ω b e F Fn ω a ω F a R F suc a F a = F suc a R Po ran F F b R F e F b = F e F b R F suc e F b = F suc e
92 91 a2d e ω b ω b e F Fn ω a ω F a R F suc a F a = F suc a R Po ran F F b R F e F b = F e F Fn ω a ω F a R F suc a F a = F suc a R Po ran F F b R F suc e F b = F suc e
93 30 35 40 45 48 92 findsg c ω b ω b c F Fn ω a ω F a R F suc a F a = F suc a R Po ran F F b R F c F b = F c
94 93 ancom1s b ω c ω b c F Fn ω a ω F a R F suc a F a = F suc a R Po ran F F b R F c F b = F c
95 94 impcom F Fn ω a ω F a R F suc a F a = F suc a R Po ran F b ω c ω b c F b R F c F b = F c
96 95 expr F Fn ω a ω F a R F suc a F a = F suc a R Po ran F b ω c ω b c F b R F c F b = F c
97 12 13 25 96 vtocl2 F Fn ω a ω F a R F suc a F a = F suc a R Po ran F d ω e ω d e F d R F e F d = F e
98 eleq1w b = e b ω e ω
99 eleq1w c = d c ω d ω
100 98 99 bi2anan9 b = e c = d b ω c ω e ω d ω
101 100 anbi2d b = e c = d F Fn ω a ω F a R F suc a F a = F suc a R Po ran F b ω c ω F Fn ω a ω F a R F suc a F a = F suc a R Po ran F e ω d ω
102 sseq12 b = e c = d b c e d
103 fveq2 b = e F b = F e
104 fveq2 c = d F c = F d
105 103 104 breqan12d b = e c = d F b R F c F e R F d
106 103 104 eqeqan12d b = e c = d F b = F c F e = F d
107 105 106 orbi12d b = e c = d F b R F c F b = F c F e R F d F e = F d
108 102 107 imbi12d b = e c = d b c F b R F c F b = F c e d F e R F d F e = F d
109 101 108 imbi12d b = e c = d F Fn ω a ω F a R F suc a F a = F suc a R Po ran F b ω c ω b c F b R F c F b = F c F Fn ω a ω F a R F suc a F a = F suc a R Po ran F e ω d ω e d F e R F d F e = F d
110 13 12 109 96 vtocl2 F Fn ω a ω F a R F suc a F a = F suc a R Po ran F e ω d ω e d F e R F d F e = F d
111 110 ancom2s F Fn ω a ω F a R F suc a F a = F suc a R Po ran F d ω e ω e d F e R F d F e = F d
112 97 111 orim12d F Fn ω a ω F a R F suc a F a = F suc a R Po ran F d ω e ω d e e d F d R F e F d = F e F e R F d F e = F d
113 11 112 mpd F Fn ω a ω F a R F suc a F a = F suc a R Po ran F d ω e ω F d R F e F d = F e F e R F d F e = F d
114 3mix1 F d R F e F d R F e F d = F e F e R F d
115 3mix2 F d = F e F d R F e F d = F e F e R F d
116 114 115 jaoi F d R F e F d = F e F d R F e F d = F e F e R F d
117 3mix3 F e R F d F d R F e F d = F e F e R F d
118 115 eqcoms F e = F d F d R F e F d = F e F e R F d
119 117 118 jaoi F e R F d F e = F d F d R F e F d = F e F e R F d
120 116 119 jaoi F d R F e F d = F e F e R F d F e = F d F d R F e F d = F e F e R F d
121 113 120 syl F Fn ω a ω F a R F suc a F a = F suc a R Po ran F d ω e ω F d R F e F d = F e F e R F d
122 breq12 F d = b F e = c F d R F e b R c
123 eqeq12 F d = b F e = c F d = F e b = c
124 breq12 F e = c F d = b F e R F d c R b
125 124 ancoms F d = b F e = c F e R F d c R b
126 122 123 125 3orbi123d F d = b F e = c F d R F e F d = F e F e R F d b R c b = c c R b
127 121 126 syl5ibcom F Fn ω a ω F a R F suc a F a = F suc a R Po ran F d ω e ω F d = b F e = c b R c b = c c R b
128 127 rexlimdvva F Fn ω a ω F a R F suc a F a = F suc a R Po ran F d ω e ω F d = b F e = c b R c b = c c R b
129 6 128 syl5bir F Fn ω a ω F a R F suc a F a = F suc a R Po ran F d ω F d = b e ω F e = c b R c b = c c R b
130 5 129 sylbid F Fn ω a ω F a R F suc a F a = F suc a R Po ran F b ran F c ran F b R c b = c c R b
131 130 ralrimivv F Fn ω a ω F a R F suc a F a = F suc a R Po ran F b ran F c ran F b R c b = c c R b
132 df-so R Or ran F R Po ran F b ran F c ran F b R c b = c c R b
133 1 131 132 sylanbrc F Fn ω a ω F a R F suc a F a = F suc a R Po ran F R Or ran F