Metamath Proof Explorer


Theorem sorpss

Description: Express strict ordering under proper subsets, i.e. the notion of a chain of sets. (Contributed by Stefan O'Rear, 2-Nov-2014)

Ref Expression
Assertion sorpss [⊂] Or A x A y A x y y x

Proof

Step Hyp Ref Expression
1 porpss [⊂] Po A
2 1 biantrur x A y A x [⊂] y x = y y [⊂] x [⊂] Po A x A y A x [⊂] y x = y y [⊂] x
3 sspsstri x y y x x y x = y y x
4 vex y V
5 4 brrpss x [⊂] y x y
6 biid x = y x = y
7 vex x V
8 7 brrpss y [⊂] x y x
9 5 6 8 3orbi123i x [⊂] y x = y y [⊂] x x y x = y y x
10 3 9 bitr4i x y y x x [⊂] y x = y y [⊂] x
11 10 2ralbii x A y A x y y x x A y A x [⊂] y x = y y [⊂] x
12 df-so [⊂] Or A [⊂] Po A x A y A x [⊂] y x = y y [⊂] x
13 2 11 12 3bitr4ri [⊂] Or A x A y A x y y x