Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Proper subset relation
sorpssi
Next ⟩
sorpssun
Metamath Proof Explorer
Ascii
Unicode
Theorem
sorpssi
Description:
Property of a chain of sets.
(Contributed by
Stefan O'Rear
, 2-Nov-2014)
Ref
Expression
Assertion
sorpssi
⊢
[⊂]
Or
A
∧
B
∈
A
∧
C
∈
A
→
B
⊆
C
∨
C
⊆
B
Proof
Step
Hyp
Ref
Expression
1
solin
⊢
[⊂]
Or
A
∧
B
∈
A
∧
C
∈
A
→
B
[⊂]
C
∨
B
=
C
∨
C
[⊂]
B
2
elex
⊢
C
∈
A
→
C
∈
V
3
2
ad2antll
⊢
[⊂]
Or
A
∧
B
∈
A
∧
C
∈
A
→
C
∈
V
4
brrpssg
⊢
C
∈
V
→
B
[⊂]
C
↔
B
⊂
C
5
3
4
syl
⊢
[⊂]
Or
A
∧
B
∈
A
∧
C
∈
A
→
B
[⊂]
C
↔
B
⊂
C
6
biidd
⊢
[⊂]
Or
A
∧
B
∈
A
∧
C
∈
A
→
B
=
C
↔
B
=
C
7
elex
⊢
B
∈
A
→
B
∈
V
8
7
ad2antrl
⊢
[⊂]
Or
A
∧
B
∈
A
∧
C
∈
A
→
B
∈
V
9
brrpssg
⊢
B
∈
V
→
C
[⊂]
B
↔
C
⊂
B
10
8
9
syl
⊢
[⊂]
Or
A
∧
B
∈
A
∧
C
∈
A
→
C
[⊂]
B
↔
C
⊂
B
11
5
6
10
3orbi123d
⊢
[⊂]
Or
A
∧
B
∈
A
∧
C
∈
A
→
B
[⊂]
C
∨
B
=
C
∨
C
[⊂]
B
↔
B
⊂
C
∨
B
=
C
∨
C
⊂
B
12
1
11
mpbid
⊢
[⊂]
Or
A
∧
B
∈
A
∧
C
∈
A
→
B
⊂
C
∨
B
=
C
∨
C
⊂
B
13
sspsstri
⊢
B
⊆
C
∨
C
⊆
B
↔
B
⊂
C
∨
B
=
C
∨
C
⊂
B
14
12
13
sylibr
⊢
[⊂]
Or
A
∧
B
∈
A
∧
C
∈
A
→
B
⊆
C
∨
C
⊆
B