Metamath Proof Explorer


Theorem sorpssi

Description: Property of a chain of sets. (Contributed by Stefan O'Rear, 2-Nov-2014)

Ref Expression
Assertion sorpssi [⊂] Or A B A C A B C C B

Proof

Step Hyp Ref Expression
1 solin [⊂] Or A B A C A B [⊂] C B = C C [⊂] B
2 elex C A C V
3 2 ad2antll [⊂] Or A B A C A C V
4 brrpssg C V B [⊂] C B C
5 3 4 syl [⊂] Or A B A C A B [⊂] C B C
6 biidd [⊂] Or A B A C A B = C B = C
7 elex B A B V
8 7 ad2antrl [⊂] Or A B A C A B V
9 brrpssg B V C [⊂] B C B
10 8 9 syl [⊂] Or A B A C A C [⊂] B C B
11 5 6 10 3orbi123d [⊂] Or A B A C A B [⊂] C B = C C [⊂] B B C B = C C B
12 1 11 mpbid [⊂] Or A B A C A B C B = C C B
13 sspsstri B C C B B C B = C C B
14 12 13 sylibr [⊂] Or A B A C A B C C B