Metamath Proof Explorer


Theorem sosn

Description: Strict ordering on a singleton. (Contributed by Mario Carneiro, 28-Dec-2014)

Ref Expression
Assertion sosn Rel R R Or A ¬ A R A

Proof

Step Hyp Ref Expression
1 elsni x A x = A
2 elsni y A y = A
3 2 eqcomd y A A = y
4 1 3 sylan9eq x A y A x = y
5 4 3mix2d x A y A x R y x = y y R x
6 5 rgen2 x A y A x R y x = y y R x
7 df-so R Or A R Po A x A y A x R y x = y y R x
8 6 7 mpbiran2 R Or A R Po A
9 posn Rel R R Po A ¬ A R A
10 8 9 bitrid Rel R R Or A ¬ A R A