Metamath Proof Explorer


Theorem soss

Description: Subset theorem for the strict ordering predicate. (Contributed by NM, 16-Mar-1997) (Proof shortened by Andrew Salmon, 25-Jul-2011)

Ref Expression
Assertion soss A B R Or B R Or A

Proof

Step Hyp Ref Expression
1 poss A B R Po B R Po A
2 ss2ralv A B x B y B x R y x = y y R x x A y A x R y x = y y R x
3 1 2 anim12d A B R Po B x B y B x R y x = y y R x R Po A x A y A x R y x = y y R x
4 df-so R Or B R Po B x B y B x R y x = y y R x
5 df-so R Or A R Po A x A y A x R y x = y y R x
6 3 4 5 3imtr4g A B R Or B R Or A