Metamath Proof Explorer


Theorem sossfld

Description: The base set of a strict order is contained in the field of the relation, except possibly for one element (note that (/) Or { B } ). (Contributed by Mario Carneiro, 27-Apr-2015)

Ref Expression
Assertion sossfld R Or A B A A B dom R ran R

Proof

Step Hyp Ref Expression
1 eldifsn x A B x A x B
2 sotrieq R Or A x A B A x = B ¬ x R B B R x
3 2 necon2abid R Or A x A B A x R B B R x x B
4 3 anass1rs R Or A B A x A x R B B R x x B
5 breldmg x A B A x R B x dom R
6 5 3expia x A B A x R B x dom R
7 6 ancoms B A x A x R B x dom R
8 brelrng B A x A B R x x ran R
9 8 3expia B A x A B R x x ran R
10 7 9 orim12d B A x A x R B B R x x dom R x ran R
11 elun x dom R ran R x dom R x ran R
12 10 11 syl6ibr B A x A x R B B R x x dom R ran R
13 12 adantll R Or A B A x A x R B B R x x dom R ran R
14 4 13 sylbird R Or A B A x A x B x dom R ran R
15 14 expimpd R Or A B A x A x B x dom R ran R
16 1 15 syl5bi R Or A B A x A B x dom R ran R
17 16 ssrdv R Or A B A A B dom R ran R