Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Partial and total orderings
sotr
Next ⟩
solin
Metamath Proof Explorer
Ascii
Unicode
Theorem
sotr
Description:
A strict order relation is a transitive relation.
(Contributed by
NM
, 21-Jan-1996)
Ref
Expression
Assertion
sotr
⊢
R
Or
A
∧
B
∈
A
∧
C
∈
A
∧
D
∈
A
→
B
R
C
∧
C
R
D
→
B
R
D
Proof
Step
Hyp
Ref
Expression
1
sopo
⊢
R
Or
A
→
R
Po
A
2
potr
⊢
R
Po
A
∧
B
∈
A
∧
C
∈
A
∧
D
∈
A
→
B
R
C
∧
C
R
D
→
B
R
D
3
1
2
sylan
⊢
R
Or
A
∧
B
∈
A
∧
C
∈
A
∧
D
∈
A
→
B
R
C
∧
C
R
D
→
B
R
D