Metamath Proof Explorer


Theorem sotr

Description: A strict order relation is a transitive relation. (Contributed by NM, 21-Jan-1996)

Ref Expression
Assertion sotr R Or A B A C A D A B R C C R D B R D

Proof

Step Hyp Ref Expression
1 sopo R Or A R Po A
2 potr R Po A B A C A D A B R C C R D B R D
3 1 2 sylan R Or A B A C A D A B R C C R D B R D