Metamath Proof Explorer


Theorem sotri

Description: A strict order relation is a transitive relation. (Contributed by NM, 10-Feb-1996) (Revised by Mario Carneiro, 10-May-2013)

Ref Expression
Hypotheses soi.1 R Or S
soi.2 R S × S
Assertion sotri A R B B R C A R C

Proof

Step Hyp Ref Expression
1 soi.1 R Or S
2 soi.2 R S × S
3 2 brel A R B A S B S
4 3 simpld A R B A S
5 2 brel B R C B S C S
6 4 5 anim12i A R B B R C A S B S C S
7 sotr R Or S A S B S C S A R B B R C A R C
8 1 7 mpan A S B S C S A R B B R C A R C
9 8 3expb A S B S C S A R B B R C A R C
10 6 9 mpcom A R B B R C A R C