Description: A strict order relation is a transitive relation. (Contributed by NM, 10-Feb-1996) (Revised by Mario Carneiro, 10-May-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | soi.1 | ||
| soi.2 | |||
| Assertion | sotri |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | soi.1 | ||
| 2 | soi.2 | ||
| 3 | 2 | brel | |
| 4 | 3 | simpld | |
| 5 | 2 | brel | |
| 6 | 4 5 | anim12i | |
| 7 | sotr | ||
| 8 | 1 7 | mpan | |
| 9 | 8 | 3expb | |
| 10 | 6 9 | mpcom |