Metamath Proof Explorer


Theorem sotri2

Description: A transitivity relation. (Read A <_ B and B < C implies A < C .) (Contributed by Mario Carneiro, 10-May-2013)

Ref Expression
Hypotheses soi.1 R Or S
soi.2 R S × S
Assertion sotri2 A S ¬ B R A B R C A R C

Proof

Step Hyp Ref Expression
1 soi.1 R Or S
2 soi.2 R S × S
3 2 brel B R C B S C S
4 3 simpld B R C B S
5 sotric R Or S B S A S B R A ¬ B = A A R B
6 1 5 mpan B S A S B R A ¬ B = A A R B
7 6 con2bid B S A S B = A A R B ¬ B R A
8 breq1 B = A B R C A R C
9 8 biimpd B = A B R C A R C
10 1 2 sotri A R B B R C A R C
11 10 ex A R B B R C A R C
12 9 11 jaoi B = A A R B B R C A R C
13 7 12 syl6bir B S A S ¬ B R A B R C A R C
14 13 com3r B R C B S A S ¬ B R A A R C
15 4 14 mpand B R C A S ¬ B R A A R C
16 15 3imp231 A S ¬ B R A B R C A R C