Metamath Proof Explorer


Theorem sotri3

Description: A transitivity relation. (Read A < B and B <_ C implies A < C .) (Contributed by Mario Carneiro, 10-May-2013)

Ref Expression
Hypotheses soi.1 R Or S
soi.2 R S × S
Assertion sotri3 C S A R B ¬ C R B A R C

Proof

Step Hyp Ref Expression
1 soi.1 R Or S
2 soi.2 R S × S
3 2 brel A R B A S B S
4 3 simprd A R B B S
5 sotric R Or S C S B S C R B ¬ C = B B R C
6 1 5 mpan C S B S C R B ¬ C = B B R C
7 6 con2bid C S B S C = B B R C ¬ C R B
8 breq2 C = B A R C A R B
9 8 biimprd C = B A R B A R C
10 1 2 sotri A R B B R C A R C
11 10 expcom B R C A R B A R C
12 9 11 jaoi C = B B R C A R B A R C
13 7 12 syl6bir C S B S ¬ C R B A R B A R C
14 13 com3r A R B C S B S ¬ C R B A R C
15 4 14 mpan2d A R B C S ¬ C R B A R C
16 15 3imp21 C S A R B ¬ C R B A R C