Metamath Proof Explorer


Theorem sotric

Description: A strict order relation satisfies strict trichotomy. (Contributed by NM, 19-Feb-1996)

Ref Expression
Assertion sotric R Or A B A C A B R C ¬ B = C C R B

Proof

Step Hyp Ref Expression
1 sonr R Or A B A ¬ B R B
2 breq2 B = C B R B B R C
3 2 notbid B = C ¬ B R B ¬ B R C
4 1 3 syl5ibcom R Or A B A B = C ¬ B R C
5 4 adantrr R Or A B A C A B = C ¬ B R C
6 so2nr R Or A B A C A ¬ B R C C R B
7 imnan B R C ¬ C R B ¬ B R C C R B
8 6 7 sylibr R Or A B A C A B R C ¬ C R B
9 8 con2d R Or A B A C A C R B ¬ B R C
10 5 9 jaod R Or A B A C A B = C C R B ¬ B R C
11 solin R Or A B A C A B R C B = C C R B
12 3orass B R C B = C C R B B R C B = C C R B
13 11 12 sylib R Or A B A C A B R C B = C C R B
14 13 ord R Or A B A C A ¬ B R C B = C C R B
15 10 14 impbid R Or A B A C A B = C C R B ¬ B R C
16 15 con2bid R Or A B A C A B R C ¬ B = C C R B