Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Partial and total orderings
sotric
Next ⟩
sotrieq
Metamath Proof Explorer
Ascii
Unicode
Theorem
sotric
Description:
A strict order relation satisfies strict trichotomy.
(Contributed by
NM
, 19-Feb-1996)
Ref
Expression
Assertion
sotric
⊢
R
Or
A
∧
B
∈
A
∧
C
∈
A
→
B
R
C
↔
¬
B
=
C
∨
C
R
B
Proof
Step
Hyp
Ref
Expression
1
sonr
⊢
R
Or
A
∧
B
∈
A
→
¬
B
R
B
2
breq2
⊢
B
=
C
→
B
R
B
↔
B
R
C
3
2
notbid
⊢
B
=
C
→
¬
B
R
B
↔
¬
B
R
C
4
1
3
syl5ibcom
⊢
R
Or
A
∧
B
∈
A
→
B
=
C
→
¬
B
R
C
5
4
adantrr
⊢
R
Or
A
∧
B
∈
A
∧
C
∈
A
→
B
=
C
→
¬
B
R
C
6
so2nr
⊢
R
Or
A
∧
B
∈
A
∧
C
∈
A
→
¬
B
R
C
∧
C
R
B
7
imnan
⊢
B
R
C
→
¬
C
R
B
↔
¬
B
R
C
∧
C
R
B
8
6
7
sylibr
⊢
R
Or
A
∧
B
∈
A
∧
C
∈
A
→
B
R
C
→
¬
C
R
B
9
8
con2d
⊢
R
Or
A
∧
B
∈
A
∧
C
∈
A
→
C
R
B
→
¬
B
R
C
10
5
9
jaod
⊢
R
Or
A
∧
B
∈
A
∧
C
∈
A
→
B
=
C
∨
C
R
B
→
¬
B
R
C
11
solin
⊢
R
Or
A
∧
B
∈
A
∧
C
∈
A
→
B
R
C
∨
B
=
C
∨
C
R
B
12
3orass
⊢
B
R
C
∨
B
=
C
∨
C
R
B
↔
B
R
C
∨
B
=
C
∨
C
R
B
13
11
12
sylib
⊢
R
Or
A
∧
B
∈
A
∧
C
∈
A
→
B
R
C
∨
B
=
C
∨
C
R
B
14
13
ord
⊢
R
Or
A
∧
B
∈
A
∧
C
∈
A
→
¬
B
R
C
→
B
=
C
∨
C
R
B
15
10
14
impbid
⊢
R
Or
A
∧
B
∈
A
∧
C
∈
A
→
B
=
C
∨
C
R
B
↔
¬
B
R
C
16
15
con2bid
⊢
R
Or
A
∧
B
∈
A
∧
C
∈
A
→
B
R
C
↔
¬
B
=
C
∨
C
R
B