Metamath Proof Explorer


Theorem sotrieq

Description: Trichotomy law for strict order relation. (Contributed by NM, 9-Apr-1996) (Proof shortened by Andrew Salmon, 25-Jul-2011)

Ref Expression
Assertion sotrieq R Or A B A C A B = C ¬ B R C C R B

Proof

Step Hyp Ref Expression
1 sonr R Or A B A ¬ B R B
2 1 adantrr R Or A B A C A ¬ B R B
3 pm1.2 B R B B R B B R B
4 2 3 nsyl R Or A B A C A ¬ B R B B R B
5 breq2 B = C B R B B R C
6 breq1 B = C B R B C R B
7 5 6 orbi12d B = C B R B B R B B R C C R B
8 7 notbid B = C ¬ B R B B R B ¬ B R C C R B
9 4 8 syl5ibcom R Or A B A C A B = C ¬ B R C C R B
10 9 con2d R Or A B A C A B R C C R B ¬ B = C
11 solin R Or A B A C A B R C B = C C R B
12 3orass B R C B = C C R B B R C B = C C R B
13 11 12 sylib R Or A B A C A B R C B = C C R B
14 or12 B R C B = C C R B B = C B R C C R B
15 13 14 sylib R Or A B A C A B = C B R C C R B
16 15 ord R Or A B A C A ¬ B = C B R C C R B
17 10 16 impbid R Or A B A C A B R C C R B ¬ B = C
18 17 con2bid R Or A B A C A B = C ¬ B R C C R B