Step |
Hyp |
Ref |
Expression |
1 |
|
soxp.1 |
|
2 |
|
sopo |
|
3 |
|
sopo |
|
4 |
1
|
poxp |
|
5 |
2 3 4
|
syl2an |
|
6 |
|
elxp |
|
7 |
|
elxp |
|
8 |
|
ioran |
|
9 |
|
ioran |
|
10 |
|
ianor |
|
11 |
10
|
anbi2i |
|
12 |
9 11
|
bitri |
|
13 |
|
ianor |
|
14 |
12 13
|
anbi12i |
|
15 |
8 14
|
bitri |
|
16 |
|
solin |
|
17 |
|
3orass |
|
18 |
|
df-or |
|
19 |
17 18
|
bitri |
|
20 |
16 19
|
sylib |
|
21 |
|
solin |
|
22 |
|
3orass |
|
23 |
|
df-or |
|
24 |
22 23
|
bitri |
|
25 |
21 24
|
sylib |
|
26 |
25
|
orim2d |
|
27 |
20 26
|
im2anan9 |
|
28 |
|
pm2.53 |
|
29 |
|
orc |
|
30 |
28 29
|
syl6 |
|
31 |
30
|
adantr |
|
32 |
|
orel1 |
|
33 |
32
|
orim2d |
|
34 |
33
|
anim2d |
|
35 |
|
imor |
|
36 |
35
|
biimpri |
|
37 |
36
|
com12 |
|
38 |
|
equcomi |
|
39 |
38
|
anim1i |
|
40 |
39
|
olcd |
|
41 |
40
|
ex |
|
42 |
37 41
|
syld |
|
43 |
29
|
a1d |
|
44 |
42 43
|
jaoi |
|
45 |
44
|
imp |
|
46 |
34 45
|
syl6com |
|
47 |
31 46
|
jaod |
|
48 |
27 47
|
syl6 |
|
49 |
48
|
impd |
|
50 |
15 49
|
syl5bi |
|
51 |
|
df-3or |
|
52 |
|
df-or |
|
53 |
51 52
|
bitri |
|
54 |
50 53
|
sylibr |
|
55 |
|
pm3.2 |
|
56 |
55
|
ad2ant2l |
|
57 |
|
idd |
|
58 |
|
simpr |
|
59 |
58
|
ancomd |
|
60 |
|
simpr |
|
61 |
60
|
ancomd |
|
62 |
|
pm3.2 |
|
63 |
59 61 62
|
syl2an |
|
64 |
56 57 63
|
3orim123d |
|
65 |
54 64
|
mpd |
|
66 |
65
|
an4s |
|
67 |
66
|
expcom |
|
68 |
67
|
an4s |
|
69 |
|
breq12 |
|
70 |
|
eqeq12 |
|
71 |
|
breq12 |
|
72 |
71
|
ancoms |
|
73 |
69 70 72
|
3orbi123d |
|
74 |
1
|
xporderlem |
|
75 |
|
vex |
|
76 |
|
vex |
|
77 |
75 76
|
opth |
|
78 |
1
|
xporderlem |
|
79 |
74 77 78
|
3orbi123i |
|
80 |
73 79
|
bitrdi |
|
81 |
80
|
biimprcd |
|
82 |
68 81
|
syl6 |
|
83 |
82
|
com3r |
|
84 |
83
|
imp |
|
85 |
84
|
an4s |
|
86 |
85
|
expcom |
|
87 |
86
|
exlimivv |
|
88 |
87
|
com12 |
|
89 |
88
|
exlimivv |
|
90 |
89
|
imp |
|
91 |
6 7 90
|
syl2anb |
|
92 |
91
|
com12 |
|
93 |
92
|
ralrimivv |
|
94 |
|
df-so |
|
95 |
5 93 94
|
sylanbrc |
|