Metamath Proof Explorer


Theorem soxp

Description: A lexicographical ordering of two strictly ordered classes. (Contributed by Scott Fenton, 17-Mar-2011) (Revised by Mario Carneiro, 7-Mar-2013)

Ref Expression
Hypothesis soxp.1 T = x y | x A × B y A × B 1 st x R 1 st y 1 st x = 1 st y 2 nd x S 2 nd y
Assertion soxp R Or A S Or B T Or A × B

Proof

Step Hyp Ref Expression
1 soxp.1 T = x y | x A × B y A × B 1 st x R 1 st y 1 st x = 1 st y 2 nd x S 2 nd y
2 sopo R Or A R Po A
3 sopo S Or B S Po B
4 1 poxp R Po A S Po B T Po A × B
5 2 3 4 syl2an R Or A S Or B T Po A × B
6 elxp t A × B a b t = a b a A b B
7 elxp u A × B c d u = c d c A d B
8 ioran ¬ a R c a = c b S d a = c b = d ¬ a R c a = c b S d ¬ a = c b = d
9 ioran ¬ a R c a = c b S d ¬ a R c ¬ a = c b S d
10 ianor ¬ a = c b S d ¬ a = c ¬ b S d
11 10 anbi2i ¬ a R c ¬ a = c b S d ¬ a R c ¬ a = c ¬ b S d
12 9 11 bitri ¬ a R c a = c b S d ¬ a R c ¬ a = c ¬ b S d
13 ianor ¬ a = c b = d ¬ a = c ¬ b = d
14 12 13 anbi12i ¬ a R c a = c b S d ¬ a = c b = d ¬ a R c ¬ a = c ¬ b S d ¬ a = c ¬ b = d
15 8 14 bitri ¬ a R c a = c b S d a = c b = d ¬ a R c ¬ a = c ¬ b S d ¬ a = c ¬ b = d
16 solin R Or A a A c A a R c a = c c R a
17 3orass a R c a = c c R a a R c a = c c R a
18 df-or a R c a = c c R a ¬ a R c a = c c R a
19 17 18 bitri a R c a = c c R a ¬ a R c a = c c R a
20 16 19 sylib R Or A a A c A ¬ a R c a = c c R a
21 solin S Or B b B d B b S d b = d d S b
22 3orass b S d b = d d S b b S d b = d d S b
23 df-or b S d b = d d S b ¬ b S d b = d d S b
24 22 23 bitri b S d b = d d S b ¬ b S d b = d d S b
25 21 24 sylib S Or B b B d B ¬ b S d b = d d S b
26 25 orim2d S Or B b B d B ¬ a = c ¬ b S d ¬ a = c b = d d S b
27 20 26 im2anan9 R Or A a A c A S Or B b B d B ¬ a R c ¬ a = c ¬ b S d a = c c R a ¬ a = c b = d d S b
28 pm2.53 a = c c R a ¬ a = c c R a
29 orc c R a c R a c = a d S b
30 28 29 syl6 a = c c R a ¬ a = c c R a c = a d S b
31 30 adantr a = c c R a ¬ a = c b = d d S b ¬ a = c c R a c = a d S b
32 orel1 ¬ b = d b = d d S b d S b
33 32 orim2d ¬ b = d ¬ a = c b = d d S b ¬ a = c d S b
34 33 anim2d ¬ b = d a = c c R a ¬ a = c b = d d S b a = c c R a ¬ a = c d S b
35 imor a = c d S b ¬ a = c d S b
36 35 biimpri ¬ a = c d S b a = c d S b
37 36 com12 a = c ¬ a = c d S b d S b
38 equcomi a = c c = a
39 38 anim1i a = c d S b c = a d S b
40 39 olcd a = c d S b c R a c = a d S b
41 40 ex a = c d S b c R a c = a d S b
42 37 41 syld a = c ¬ a = c d S b c R a c = a d S b
43 29 a1d c R a ¬ a = c d S b c R a c = a d S b
44 42 43 jaoi a = c c R a ¬ a = c d S b c R a c = a d S b
45 44 imp a = c c R a ¬ a = c d S b c R a c = a d S b
46 34 45 syl6com a = c c R a ¬ a = c b = d d S b ¬ b = d c R a c = a d S b
47 31 46 jaod a = c c R a ¬ a = c b = d d S b ¬ a = c ¬ b = d c R a c = a d S b
48 27 47 syl6 R Or A a A c A S Or B b B d B ¬ a R c ¬ a = c ¬ b S d ¬ a = c ¬ b = d c R a c = a d S b
49 48 impd R Or A a A c A S Or B b B d B ¬ a R c ¬ a = c ¬ b S d ¬ a = c ¬ b = d c R a c = a d S b
50 15 49 syl5bi R Or A a A c A S Or B b B d B ¬ a R c a = c b S d a = c b = d c R a c = a d S b
51 df-3or a R c a = c b S d a = c b = d c R a c = a d S b a R c a = c b S d a = c b = d c R a c = a d S b
52 df-or a R c a = c b S d a = c b = d c R a c = a d S b ¬ a R c a = c b S d a = c b = d c R a c = a d S b
53 51 52 bitri a R c a = c b S d a = c b = d c R a c = a d S b ¬ a R c a = c b S d a = c b = d c R a c = a d S b
54 50 53 sylibr R Or A a A c A S Or B b B d B a R c a = c b S d a = c b = d c R a c = a d S b
55 pm3.2 a A c A b B d B a R c a = c b S d a A c A b B d B a R c a = c b S d
56 55 ad2ant2l R Or A a A c A S Or B b B d B a R c a = c b S d a A c A b B d B a R c a = c b S d
57 idd R Or A a A c A S Or B b B d B a = c b = d a = c b = d
58 simpr R Or A a A c A a A c A
59 58 ancomd R Or A a A c A c A a A
60 simpr S Or B b B d B b B d B
61 60 ancomd S Or B b B d B d B b B
62 pm3.2 c A a A d B b B c R a c = a d S b c A a A d B b B c R a c = a d S b
63 59 61 62 syl2an R Or A a A c A S Or B b B d B c R a c = a d S b c A a A d B b B c R a c = a d S b
64 56 57 63 3orim123d R Or A a A c A S Or B b B d B a R c a = c b S d a = c b = d c R a c = a d S b a A c A b B d B a R c a = c b S d a = c b = d c A a A d B b B c R a c = a d S b
65 54 64 mpd R Or A a A c A S Or B b B d B a A c A b B d B a R c a = c b S d a = c b = d c A a A d B b B c R a c = a d S b
66 65 an4s R Or A S Or B a A c A b B d B a A c A b B d B a R c a = c b S d a = c b = d c A a A d B b B c R a c = a d S b
67 66 expcom a A c A b B d B R Or A S Or B a A c A b B d B a R c a = c b S d a = c b = d c A a A d B b B c R a c = a d S b
68 67 an4s a A b B c A d B R Or A S Or B a A c A b B d B a R c a = c b S d a = c b = d c A a A d B b B c R a c = a d S b
69 breq12 t = a b u = c d t T u a b T c d
70 eqeq12 t = a b u = c d t = u a b = c d
71 breq12 u = c d t = a b u T t c d T a b
72 71 ancoms t = a b u = c d u T t c d T a b
73 69 70 72 3orbi123d t = a b u = c d t T u t = u u T t a b T c d a b = c d c d T a b
74 1 xporderlem a b T c d a A c A b B d B a R c a = c b S d
75 vex a V
76 vex b V
77 75 76 opth a b = c d a = c b = d
78 1 xporderlem c d T a b c A a A d B b B c R a c = a d S b
79 74 77 78 3orbi123i a b T c d a b = c d c d T a b a A c A b B d B a R c a = c b S d a = c b = d c A a A d B b B c R a c = a d S b
80 73 79 bitrdi t = a b u = c d t T u t = u u T t a A c A b B d B a R c a = c b S d a = c b = d c A a A d B b B c R a c = a d S b
81 80 biimprcd a A c A b B d B a R c a = c b S d a = c b = d c A a A d B b B c R a c = a d S b t = a b u = c d t T u t = u u T t
82 68 81 syl6 a A b B c A d B R Or A S Or B t = a b u = c d t T u t = u u T t
83 82 com3r t = a b u = c d a A b B c A d B R Or A S Or B t T u t = u u T t
84 83 imp t = a b u = c d a A b B c A d B R Or A S Or B t T u t = u u T t
85 84 an4s t = a b a A b B u = c d c A d B R Or A S Or B t T u t = u u T t
86 85 expcom u = c d c A d B t = a b a A b B R Or A S Or B t T u t = u u T t
87 86 exlimivv c d u = c d c A d B t = a b a A b B R Or A S Or B t T u t = u u T t
88 87 com12 t = a b a A b B c d u = c d c A d B R Or A S Or B t T u t = u u T t
89 88 exlimivv a b t = a b a A b B c d u = c d c A d B R Or A S Or B t T u t = u u T t
90 89 imp a b t = a b a A b B c d u = c d c A d B R Or A S Or B t T u t = u u T t
91 6 7 90 syl2anb t A × B u A × B R Or A S Or B t T u t = u u T t
92 91 com12 R Or A S Or B t A × B u A × B t T u t = u u T t
93 92 ralrimivv R Or A S Or B t A × B u A × B t T u t = u u T t
94 df-so T Or A × B T Po A × B t A × B u A × B t T u t = u u T t
95 5 93 94 sylanbrc R Or A S Or B T Or A × B