Metamath Proof Explorer


Theorem spancl

Description: The span of a subset of Hilbert space is a subspace. (Contributed by NM, 2-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion spancl A span A S

Proof

Step Hyp Ref Expression
1 spanval A span A = x S | A x
2 ssrab2 x S | A x S
3 helsh S
4 sseq2 x = A x A
5 4 rspcev S A x S A x
6 3 5 mpan A x S A x
7 rabn0 x S | A x x S A x
8 6 7 sylibr A x S | A x
9 shintcl x S | A x S x S | A x x S | A x S
10 2 8 9 sylancr A x S | A x S
11 1 10 eqeltrd A span A S