Metamath Proof Explorer


Theorem spansn

Description: The span of a singleton in Hilbert space equals its closure. (Contributed by NM, 4-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion spansn A span A = A

Proof

Step Hyp Ref Expression
1 sneq A = if A A 0 A = if A A 0
2 1 fveq2d A = if A A 0 span A = span if A A 0
3 1 fveq2d A = if A A 0 A = if A A 0
4 3 fveq2d A = if A A 0 A = if A A 0
5 2 4 eqeq12d A = if A A 0 span A = A span if A A 0 = if A A 0
6 ifhvhv0 if A A 0
7 6 spansni span if A A 0 = if A A 0
8 5 7 dedth A span A = A