Metamath Proof Explorer


Theorem spansncol

Description: The singletons of collinear vectors have the same span. (Contributed by NM, 6-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion spansncol A B B 0 span B A = span A

Proof

Step Hyp Ref Expression
1 mulcl y B y B
2 1 ancoms B y y B
3 2 adantll A B y y B
4 ax-hvmulass y B A y B A = y B A
5 4 3com13 A B y y B A = y B A
6 5 3expa A B y y B A = y B A
7 6 eqeq2d A B y x = y B A x = y B A
8 7 biimprd A B y x = y B A x = y B A
9 oveq1 z = y B z A = y B A
10 9 rspceeqv y B x = y B A z x = z A
11 3 8 10 syl6an A B y x = y B A z x = z A
12 11 rexlimdva A B y x = y B A z x = z A
13 12 3adant3 A B B 0 y x = y B A z x = z A
14 divcl z B B 0 z B
15 14 3expb z B B 0 z B
16 15 adantlr z A B B 0 z B
17 simprl z A B B 0 B
18 simplr z A B B 0 A
19 ax-hvmulass z B B A z B B A = z B B A
20 16 17 18 19 syl3anc z A B B 0 z B B A = z B B A
21 divcan1 z B B 0 z B B = z
22 21 3expb z B B 0 z B B = z
23 22 adantlr z A B B 0 z B B = z
24 23 oveq1d z A B B 0 z B B A = z A
25 20 24 eqtr3d z A B B 0 z B B A = z A
26 25 eqeq2d z A B B 0 x = z B B A x = z A
27 26 biimprd z A B B 0 x = z A x = z B B A
28 oveq1 y = z B y B A = z B B A
29 28 rspceeqv z B x = z B B A y x = y B A
30 16 27 29 syl6an z A B B 0 x = z A y x = y B A
31 30 exp43 z A B B 0 x = z A y x = y B A
32 31 com4l A B B 0 z x = z A y x = y B A
33 32 3imp A B B 0 z x = z A y x = y B A
34 33 rexlimdv A B B 0 z x = z A y x = y B A
35 13 34 impbid A B B 0 y x = y B A z x = z A
36 hvmulcl B A B A
37 36 ancoms A B B A
38 elspansn B A x span B A y x = y B A
39 37 38 syl A B x span B A y x = y B A
40 39 3adant3 A B B 0 x span B A y x = y B A
41 elspansn A x span A z x = z A
42 41 3ad2ant1 A B B 0 x span A z x = z A
43 35 40 42 3bitr4d A B B 0 x span B A x span A
44 43 eqrdv A B B 0 span B A = span A