Metamath Proof Explorer


Theorem spansni

Description: The span of a singleton in Hilbert space equals its closure. (Contributed by NM, 3-Jun-2004) (New usage is discouraged.)

Ref Expression
Hypothesis spansn.1 A
Assertion spansni span A = A

Proof

Step Hyp Ref Expression
1 spansn.1 A
2 snssi A A
3 spanssoc A span A A
4 1 2 3 mp2b span A A
5 1 elexi A V
6 5 snss A y A y
7 shmulcl y S z A y z A y
8 7 3expia y S z A y z A y
9 8 ancoms z y S A y z A y
10 6 9 syl5bir z y S A y z A y
11 eleq1 x = z A x y z A y
12 11 imbi2d x = z A A y x y A y z A y
13 10 12 syl5ibrcom z y S x = z A A y x y
14 13 ralrimdva z x = z A y S A y x y
15 14 rexlimiv z x = z A y S A y x y
16 1 h1de2ci x A z x = z A
17 vex x V
18 17 elspani A x span A y S A y x y
19 1 2 18 mp2b x span A y S A y x y
20 15 16 19 3imtr4i x A x span A
21 20 ssriv A span A
22 4 21 eqssi span A = A