Metamath Proof Explorer


Theorem spansnmul

Description: A scalar product with a vector belongs to the span of its singleton. (Contributed by NM, 3-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion spansnmul A B B A span A

Proof

Step Hyp Ref Expression
1 spansnsh A span A S
2 spansnid A A span A
3 1 2 jca A span A S A span A
4 shmulcl span A S B A span A B A span A
5 4 3com12 B span A S A span A B A span A
6 5 3expb B span A S A span A B A span A
7 3 6 sylan2 B A B A span A
8 7 ancoms A B B A span A