Metamath Proof Explorer


Theorem spansnpji

Description: A subset of Hilbert space is orthogonal to the span of the singleton of a projection onto its orthocomplement. (Contributed by NM, 4-Jun-2004) (Revised by Mario Carneiro, 15-May-2014) (New usage is discouraged.)

Ref Expression
Hypotheses spansnpj.1 A
spansnpj.2 B
Assertion spansnpji A span proj A B

Proof

Step Hyp Ref Expression
1 spansnpj.1 A
2 spansnpj.2 B
3 ococss A A A
4 1 3 ax-mp A A
5 occl A A C
6 1 5 ax-mp A C
7 6 chssii A
8 6 2 pjclii proj A B A
9 snssi proj A B A proj A B A
10 8 9 ax-mp proj A B A
11 spanss A proj A B A span proj A B span A
12 7 10 11 mp2an span proj A B span A
13 6 chshii A S
14 spanid A S span A = A
15 13 14 ax-mp span A = A
16 12 15 sseqtri span proj A B A
17 6 2 pjhclii proj A B
18 17 spansnchi span proj A B C
19 18 6 chsscon3i span proj A B A A span proj A B
20 16 19 mpbi A span proj A B
21 4 20 sstri A span proj A B