Metamath Proof Explorer


Theorem spansnss

Description: The span of the singleton of an element of a subspace is included in the subspace. (Contributed by NM, 5-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion spansnss A S B A span B A

Proof

Step Hyp Ref Expression
1 shel A S B A B
2 elspansn B x span B y x = y B
3 1 2 syl A S B A x span B y x = y B
4 shmulcl A S y B A y B A
5 eleq1a y B A x = y B x A
6 4 5 syl A S y B A x = y B x A
7 6 3exp A S y B A x = y B x A
8 7 com23 A S B A y x = y B x A
9 8 imp A S B A y x = y B x A
10 9 rexlimdv A S B A y x = y B x A
11 3 10 sylbid A S B A x span B x A
12 11 ssrdv A S B A span B A