Metamath Proof Explorer


Theorem spansnss2

Description: The span of the singleton of an element of a subspace is included in the subspace. (Contributed by NM, 16-Dec-2004) (New usage is discouraged.)

Ref Expression
Assertion spansnss2 A S B B A span B A

Proof

Step Hyp Ref Expression
1 spansnss A S B A span B A
2 1 ex A S B A span B A
3 2 adantr A S B B A span B A
4 spansnid B B span B
5 ssel span B A B span B B A
6 4 5 syl5com B span B A B A
7 6 adantl A S B span B A B A
8 3 7 impbid A S B B A span B A